Abstract:Despite Federated Learning (FL) employing gradient aggregation at the server for distributed training to prevent the privacy leakage of raw data, private information can still be divulged through the analysis of uploaded gradients from clients. Substantial efforts have been made to integrate local differential privacy (LDP) into the system to achieve a strict privacy guarantee. However, existing methods fail to take practical issues into account by merely perturbing each sample with the same mechanism while each client may have their own privacy preferences on privacy-sensitive information (PSI), which is not uniformly distributed across the raw data. In such a case, excessive privacy protection from private-insensitive information can additionally introduce unnecessary noise, which may degrade the model performance. In this work, we study the PSI within data and develop FedRE, that can simultaneously achieve robustness and effectiveness benefits with LDP protection. More specifically, we first define PSI with regard to the privacy preferences of each client. Then, we optimize the LDP by allocating less privacy budget to gradients with higher PSI in a layer-wise manner, thus providing a stricter privacy guarantee for PSI. Furthermore, to mitigate the performance degradation caused by LDP, we design a parameter aggregation mechanism based on the distribution of the perturbed information. We conducted experiments with text tamper detection on T-SROIE and DocTamper datasets, and FedRE achieves competitive performance compared to state-of-the-art methods.
Abstract:Large language models (LLMs) are prone to capturing biases from training corpus, leading to potential negative social impacts. Existing prompt-based debiasing methods exhibit instability due to their sensitivity to prompt changes, while fine-tuning-based techniques incur substantial computational overhead and catastrophic forgetting. In this paper, we propose FairSteer, a novel inference-time debiasing framework without requiring customized prompt design or model retraining. Motivated by the linear representation hypothesis, our preliminary investigation demonstrates that fairness-related features can be encoded into separable directions in the hidden activation space. FairSteer operates in three steps: biased activation detection, debiasing steering vector (DSV) computation, and dynamic activation steering. Specifically, it first trains a lightweight linear classifier to detect bias signatures in activations, and then computes DSVs as intervention directions derived from small contrastive prompt pairs. Subsequently, it performs debiasing by adjusting activations with DSVs in the inference stage. Comprehensive evaluation with six LLMs demonstrates the superiority of FairSteer across question-answering, counterfactual input evaluation and open-ended text generation tasks. Code will be released.
Abstract:Multi-step cloth manipulation is a challenging problem for robots due to the high-dimensional state spaces and the dynamics of cloth. Despite recent significant advances in end-to-end imitation learning for multi-step cloth manipulation skills, these methods fail to generalize to unseen tasks. Our insight in tackling the challenge of generalizable multi-step cloth manipulation is decomposition. We propose a novel pipeline that autonomously learns basic skills from long demonstrations and composes learned basic skills to generalize to unseen tasks. Specifically, our method first discovers and learns basic skills from the existing long demonstration benchmark with the commonsense knowledge of a large language model (LLM). Then, leveraging a high-level LLM-based task planner, these basic skills can be composed to complete unseen tasks. Experimental results demonstrate that our method outperforms baseline methods in learning multi-step cloth manipulation skills for both seen and unseen tasks.
Abstract:Federated Continual Learning (FCL) aims to enable sequentially privacy-preserving model training on streams of incoming data that vary in edge devices by preserving previous knowledge while adapting to new data. Current FCL literature focuses on restricted data privacy and access to previously seen data while imposing no constraints on the training overhead. This is unreasonable for FCL applications in real-world scenarios, where edge devices are primarily constrained by resources such as storage, computational budget, and label rate. We revisit this problem with a large-scale benchmark and analyze the performance of state-of-the-art FCL approaches under different resource-constrained settings. Various typical FCL techniques and six datasets in two incremental learning scenarios (Class-IL and Domain-IL) are involved in our experiments. Through extensive experiments amounting to a total of over 1,000+ GPU hours, we find that, under limited resource-constrained settings, existing FCL approaches, with no exception, fail to achieve the expected performance. Our conclusions are consistent in the sensitivity analysis. This suggests that most existing FCL methods are particularly too resource-dependent for real-world deployment. Moreover, we study the performance of typical FCL techniques with resource constraints and shed light on future research directions in FCL.
Abstract:Recent studies have shown that Federated learning (FL) is vulnerable to Gradient Inversion Attacks (GIA), which can recover private training data from shared gradients. However, existing methods are designed for dense, continuous data such as images or vectorized texts, and cannot be directly applied to sparse and discrete graph data. This paper first explores GIA's impact on Federated Graph Learning (FGL) and introduces Graph Inversion from Gradient in Federated Learning (FedGIG), a novel GIA method specifically designed for graph-structured data. FedGIG includes the adjacency matrix constraining module, which ensures the sparsity and discreteness of the reconstructed graph data, and the subgraph reconstruction module, which is designed to complete missing common subgraph structures. Extensive experiments on molecular datasets demonstrate FedGIG's superior accuracy over existing GIA techniques.
Abstract:Cross-Project Defect Prediction (CPDP) poses a non-trivial challenge to construct a reliable defect predictor by leveraging data from other projects, particularly when data owners are concerned about data privacy. In recent years, Federated Learning (FL) has become an emerging paradigm to guarantee privacy information by collaborative training a global model among multiple parties without sharing raw data. While the direct application of FL to the CPDP task offers a promising solution to address privacy concerns, the data heterogeneity arising from proprietary projects across different companies or organizations will bring troubles for model training. In this paper, we study the privacy-preserving cross-project defect prediction with data heterogeneity under the federated learning framework. To address this problem, we propose a novel knowledge enhancement approach named FedDP with two simple but effective solutions: 1. Local Heterogeneity Awareness and 2. Global Knowledge Distillation. Specifically, we employ open-source project data as the distillation dataset and optimize the global model with the heterogeneity-aware local model ensemble via knowledge distillation. Experimental results on 19 projects from two datasets demonstrate that our method significantly outperforms baselines.
Abstract:Continual Federated Learning (CFL) allows distributed devices to collaboratively learn novel concepts from continuously shifting training data while avoiding knowledge forgetting of previously seen tasks. To tackle this challenge, most current CFL approaches rely on extensive rehearsal of previous data. Despite effectiveness, rehearsal comes at a cost to memory, and it may also violate data privacy. Considering these, we seek to apply regularization techniques to CFL by considering their cost-efficient properties that do not require sample caching or rehearsal. Specifically, we first apply traditional regularization techniques to CFL and observe that existing regularization techniques, especially synaptic intelligence, can achieve promising results under homogeneous data distribution but fail when the data is heterogeneous. Based on this observation, we propose a simple yet effective regularization algorithm for CFL named FedSSI, which tailors the synaptic intelligence for the CFL with heterogeneous data settings. FedSSI can not only reduce computational overhead without rehearsal but also address the data heterogeneity issue. Extensive experiments show that FedSSI achieves superior performance compared to state-of-the-art methods.
Abstract:Non-Centralized Continual Learning (NCCL) has become an emerging paradigm for enabling distributed devices such as vehicles and servers to handle streaming data from a joint non-stationary environment. To achieve high reliability and scalability in deploying this paradigm in distributed systems, it is essential to conquer challenges stemming from both spatial and temporal dimensions, manifesting as distribution shifts, catastrophic forgetting, heterogeneity, and privacy issues. This survey focuses on a comprehensive examination of the development of the non-centralized continual learning algorithms and the real-world deployment across distributed devices. We begin with an introduction to the background and fundamentals of non-centralized learning and continual learning. Then, we review existing solutions from three levels to represent how existing techniques alleviate the catastrophic forgetting and distribution shift. Additionally, we delve into the various types of heterogeneity issues, security, and privacy attributes, as well as real-world applications across three prevalent scenarios. Furthermore, we establish a large-scale benchmark to revisit this problem and analyze the performance of the state-of-the-art NCCL approaches. Finally, we discuss the important challenges and future research directions in NCCL.
Abstract:Imitation learning (IL) is a general paradigm for learning from experts in sequential decision-making problems. Recent advancements in IL have shown that offline imitation learning, specifically Behavior Cloning (BC) with log loss, is minimax optimal. Meanwhile, its interactive counterpart, DAgger, is shown to suffer from suboptimal sample complexity. In this note, we focus on realizable deterministic expert and revisit interactive imitation learning, particularly DAgger with log loss. We demonstrate: 1. A one-sample-per-round DAgger variant that outperforms BC in state-wise annotation. 2. Without recoverability assumption, DAgger with first-step mixture policies matches the performance of BC. Along the analysis, we introduce a new notion of decoupled Hellinger distance that separates state and action sequences, which can be of independent interest.
Abstract:Generating fair and accurate predictions plays a pivotal role in deploying large language models (LLMs) in the real world. However, existing debiasing methods inevitably generate unfair or incorrect predictions as they are designed and evaluated to achieve parity across different social groups but leave aside individual commonsense facts, resulting in modified knowledge that elicits unreasonable or undesired predictions. In this paper, we first establish a new bias mitigation benchmark, BiaScope, which systematically assesses performance by leveraging newly constructed datasets and metrics on knowledge retention and generalization. Then, we propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases. FAST identifies the decisive layer responsible for storing social biases and then calibrates its outputs by integrating a small modular network, considering both bias mitigation and knowledge-preserving demands. Comprehensive experiments demonstrate that FAST surpasses state-of-the-art baselines with superior debiasing performance while not compromising the overall model capability for knowledge retention and downstream predictions. This highlights the potential of fine-grained debiasing strategies to achieve fairness in LLMs. Code will be publicly available.